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Non-linear elastic behavior of light fibrous materials
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Abstract. Light fibrous materials composed of elastic fibers display a non-linear elastic behavior, where the
non-linearity is due to the increase in the number of contacts between fibers under compression. Testing
glass wool under compression up to 95% shows such a strongly non-linear behavior. A model is proposed to
account for the divergence of the compressive stress σ as the strain ε approaches a threshold compression
ε∗, with σ ∝ (ε∗ − ε)−3/2. Quantitative analysis of the experimental data on glass wool is fully consistent
with this result.

PACS. 62.20.-x Mechanical properties of solids – 62.20.Dc Elasticity, elastic constants

1 Introduction

Light fibrous materials generally present an extremely low
apparent density and hence are good candidates for their
performance as thermal insulating materials. This is in-
deed the case for glass wool which is the material we
will use below to illustrate our model. This low density
also encourages one to store these materials under a high
compression and hence, this requires a good understand-
ing of their mechanical properties under large compressive
strains. In the case of glass wool, the typical compression
is about 90 to 95 % [1].

Under such large strains, the behavior of glass wool is
no longer linearly elastic but (after of few strain cycles)
it can still remain elastic (friction, damage, visco-elastic
effects can be ignored for a first order description). The
most obvious origin of this non-linearity is the creation of
contacts between fibers.

The most famous example of such a non-linearity is
the Hertz problem describing one single elastic contact
between two solids, and where the force displacement re-
lation is not linear because of the variation of the contact
area as the contact force is changing [2]. In the case of glass
wool, in contrast, contacts are created inside the bulk of
the material.

The literature is rather limited on such a subject. In
the study of the geometry of fibrous materials, some in-
formation can be found on the packing fraction of rigid
rods, taking into account either a hard-core repulsion or
allowing for some overlap between rods [3,4]. The inter-
est on this question arouse because of the applicability
of this concept to the study of conductivity properties of
composites reinforced with short fibers [5]. However, be-
cause of the rigidity of the rods which is postulated in
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those studies, it is difficult to extend the obtained results
to deformable fibers such encountered in glass wool.

Going beyond the pure geometrical problem, analogies
can be searched for in low density materials, such as foams,
composites, or other generically cellular materials whose
properties have been reviewed extensively by Gibson and
Ashby [6]. However, here again, many other aspects may
come into play in the mechanical behavior of these materi-
als. In particular when large deformations are reached, ei-
ther damage, crushing, or simply elastic buckling must be
considered, and for contact non-linearity to be dominant,
severe constraints are imposed on the constituents of the
materials. Most studies thus did not observe a non-linear
elastic behavior in the so-called “densification regime”,
which could be attributed mainly to contacts.

An analogy in two dimensions can be found in a recent
study by Sherwood and Vandamme [7] which addressed
the mechanical behavior of clays through a model sys-
tems consisting in rectangular platelets held between two
parallel glass plates through which the densification could
be observed at the level of individual contacts. Such a
system does respond elastically in a large range of strain,
and most of the non-linearity comes from contacts being
created. However because of the two-dimensional nature
of the problem, contacts are established along large seg-
ments of the platelets and thus the nature of these contact
is quite different from our fibrous systems.

2 Model

The geometry of the material is a loose array of fibers
interconnected at contacts (cf. Fig. 1). Thus there are two
very different scales: one is the fiber diameter d, and the
other is the mean distance between contact points 〈`〉.
The former remains constant and it controls the elastic
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Fig. 1. Optical photomicrography by transmission showing a
typical texture of a layer sampled from glass wool used in the
experimental part enclosed between two glass plates. Scale bar
represents 100µm.

properties of the fibers, whereas the latter changes as the
sample is compressed. A reasonable approximation when
the material remains loose, is to approximate the fibers
by arcs, describing them using curvilinear elasticity, where
only flexion is considered. Thus the only remaining length
scale is the distance between contacts.

As a consequence, different geometries of the fiber net-
work for different levels of stress can be related by a simple
scale transformation. Let us show that this simple obser-
vation already implies a power-law relation between ` and
the stress, σ. Let us imagine changing the stress from σ
to σ′ = aσ. Due to the absence of any other length scale,
there exists a scale factor depending on a, f(a) relating
the intercontact distance in those two cases, `′ = f(a)`. If
we now perform a second consecutive transformation, to
σ′′ = bσ′, then `′′ = f(b)`′. One could also consider going
from σ to σ′′ and `′′ = f(ab)`. This implies

f(ab) = f(a)f(b) (1)

for all values of a and b. This group property implies that
f is a power-law. This can be easily retrieved by differen-
tiating the above equation with respect to b:

af ′(ab) = f(a)f ′(b) (2)

and setting b = 1:
f ′(a)
f(a)

=
µ

a
(3)

where µ = f ′(1). Integration of this differential equation
leads to

f(a) = aµ (4)

where we have used the condition f(1) = 1 (no stress
change implies no scale change) to set the prefactor. If this
argument justifies the existence of a power-law relation

between σ and `, ` ∝ σµ, it cannot provide the value of
the exponent.

This section is devoted to an explicitly derivation of
such a scale transformation. First we will relate stress
and strain at a macroscopic level to forces and displace-
ments between contact points, using dimensional argu-
ments. Then we will obtain the scaling of the distance
〈`〉 with the compression stress. These results will give
the stress strain relationship in the elastic regime.

2.1 From microscopic to macroscopic

In this subsection, we will ignore the statistical distribu-
tion of distances ` between contact points, and treat ` as
a fixed value for a given stress.

We assume that the fibers obey linear elasticity over
the full range of strain. However, the macroscopic stress-
strain relation being non-linear, we consider only an in-
finitesimal increment of stress dσ around an equilibrium
state.

Fibers are subjected to forces F and torques M . We
ignore fiber elongation or compression due to these forces,
and focus on flexural torques M (` � d). There exists
several contact points in a layer of fibers. For each state
of compression, the mean number of these contact points
by surface unit is 1/`2. Thus the increment of stress gives
rise to an increase of forces being transmitted at contacts
of order

1
`2

dF = dσ. (5)

Curvilinear elasticity [8] gives the flexural stiffness k of a
fiber as a function of its length (we ignore the dependence
on d because we assume a narrow distribution of fibers
diameters)

k ∝ `−3. (6)

We do not take account the dependence of k on other
properties of the fiber (diameter or Young’s modulus be-
cause they are not varying during the mechanical test).
The apparent coefficient of Poisson is nil and therefore
the average relative displacement is (on average) parallel
to the direction of compression. We note U = ‖U‖. The
relative displacement U of neighboring contact points thus
increases as

dU ∝ k−1dF ∝ `5dσ. (7)

Let us introduce h0 the initial thickness of the sample sup-
porting no stress, and h its current thickness. The change
of thickness dh, resulting from the stress increment, is
given by the relative displacement between contact points
dU times the number of contacts along a continuous di-
rected path across the sample. This number is in fact a
property which directly result from the structure of the
fiber orientation and arrangement in the wool. In the case
of a strong layering of fibers in plane perpendicular to the
compression axis, we assume here that the number of con-
tacts along a continuous directed path across the sample
is fixed. Therefore

dh ∝ `5dσ. (8)
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dUdv
e

Fig. 2. Sketch of the volume of space, dv, swept by a fiber
portion, `, during an increment of displacement, dU.

For large strains, there are different ways of defining the
strain. We choose by convention to define the strain as the
relative reduction of height of the sample under compres-
sion, ε = δh/h0. Hence

dε ∝ `5dσ. (9)

The above equations allow to relate the macroscopic vari-
ables to the microscopic ones. There remains to determine
the evolution of ` as a function of σ.

2.2 Distance between contact points

In contrast to the previous section, we introduce the sta-
tistical distribution of distances between contacts denoted
through n(`, σ). We will write down the evolution of this
distribution as the stress increases. For simplicity, we will
call a “bond” the fiber segment between two consecutive
contacts.

For this we need to know the probability p(`, σ)dσ that
in a small stress increment dσ, a bond of length ` encoun-
ters another fiber and thus creates a new contact. The
volume of space swept by this bond in the stress incre-
ment dσ is dv (cf. Fig. 2). Once again ignoring constant
factors such as the fiber diameter, this volume scales as

dv ∝ `dU ∝ `6dσ. (10)

Due to the absence of stress scale, we argue that the prob-
ability p is simply proportional to the swept volume for a
fixed relative stress increment

p(`, σ)
dσ
σ
∝ dv (11)

or
p(`, σ) = $`6σ (12)

where $ is a constant.
There are three contributions to the evolution of the

number of bonds in the stress increment dσ: a fraction
n(`, σ)d` will establish a new contact with a probability

p(`, σ)dσ. Those bonds will disappear from the initial pop-
ulation. Similarly longer bonds of length `′ will create a
new contact which may give rise one bond of length ` and
a second one length `′− `. We assume that a new contact
may be created anywhere on the original bond. The num-
ber of bonds which are susceptible to create such contacts
is n(`′, σ). The probability of these events is q(`′ → `) and
q(`′ → `′−`). The balance equation for those bonds reads

dn(`, σ)
dσ

= −n(`, σ)p(`, σ) +
∫ ∞
`

n(`′, σ)q(`′ → `)d`′

+
∫ ∞
`

n(`′, σ)q(`′ → `′ − `)d`′. (13)

We can write

q(`′ → `) = p(`′, σ)ψ(
`

`′
)d
`

`′
(14)

and
q(`′ → `′ − `) = p(`′, σ)ψ(1− `

`′
)d
`

`′
(15)

where `/`′ is a random variable varying between 0 and 1
and ψ the uniform distribution between 0 and 1.

But ψ(`/`′) = ψ(1− `/`′) because the problem is sym-
metrical. Then

dn(`, σ)
dσ

= −n(`, σ)p(`, σ) + 2
∫ ∞
`

n(`′, σ)p(`′, σ)
d`′

`′
·

(16)
Similar equations are encountered in modeling of fragmen-
tation [9]. Without solving exactly the above equation,
two strategies lead to the scaling of ` with the stress. Both
are clarified in the following subsections.

2.3 Analysis of moments

Let us introduce the moment of the bond length of order
k as

Mk ≡
∫ ∞

0

n(`, σ)`kd`. (17)

Integration of the balance equation (Eq. (16)) leads to the
following recurrence

dMk

dσ
= $σ

(
2

k + 1
− 1
)
Mk+6. (18)

Only one of these equations is directly integrable (k = 1),
but it gives only a trivial result, namely that the total
fiber length remains constant (independent from σ). Other
moments scale with the stress according to

Mk(σ) = Akσ
ζ(k) (19)

where the prefactors Ak are related to each other through
recurrence relations which are not clarified here since we
will not exploit them any further. From equation (18), we
obtain:

ζ(k) = ζ(k + 6) + 2 (20)
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and the fact that M1 is constant give α(1) = 0. The gen-
eral solution of equation (20) is ζ(k) = (1 − k)/3 + γ(k)
where γ(k) obeys γ(1) = 0 and γ(k + 6) = γ(k) i.e. γ is
periodic of period six. The exponents ζ(k) govern the scal-
ing of different moments of the distribution and thus they
obey convexity properties, ∂2ζ(k)/∂k2 = ∂2γ(k)/∂k2 ≥ 0,
which imply γ(k) = 0, hence

ζ(k) =
(1− k)

3
· (21)

The above scaling can be physically understood as follows:
the total number of bonds is given by M0 and it increases
as σ1/3. A typical length of a bond can be defined through
the ratio of two consecutive moments, e.g. ` ∝Mk+1/Mk.
One of these is the average bond length, 〈`〉 = M1/M0.
All these ratio behave similarly, as

〈`〉 ∼ σ−1/3. (22)

The above scaling law for the moments simply means that
Mk ≈M0〈`〉k, so that in terms of scaling, one may ignore
the statistical distribution of `, and use a typical value
instead.

2.4 Equivalent derivation from scaling

Instead of studying moments of the distribution as done
previously, it is also possible to postulate that the number
of bonds of length ` for a compressive stress σ is a unique
function of the ratio of ` over a characteristic length `∗

which itself depends on σ. Since the fiber diameter is con-
sidered irrelevant, `∗ has to be a homogeneous function
of σ

`∗ ∝ σ−b. (23)

Hence our scaling hypothesis is

n(`, σ) = σaϕ(`σb) (24)

where a and b are exponents to be determined, and ϕ is
the scaling function.

Let us introduce λ = `σb. Substituting the scaling form
of n in equation (16) gives

aϕ(λ)+bλϕ′(λ) = −$`6σ2ϕ(λ)+2$σ2

∫ ∞
`

ϕ(`′σb)`′5d`′.

(25)
The left hand side of the above equation only depends on
λ, thus so must do the right hand side. This determines

b =
1
3

(26)

in agreement with the previously derived value. The a ex-
ponent can still assume any value. It is determined from
the first moment (the total fiber length is stress indepen-
dent).

M1 =
∫
σaϕ(`σb)`d` = σa−2b

∫
ϕ(u)udu (27)

thus
a = 2b (28)

thus
n(`, σ) = σ2/3ϕ(`σ1/3). (29)

Finally using these values, we arrive at the equation to be
solved for the scaling function ϕ

2
3
ϕ(λ) +

λ

3
ϕ′(λ) = $

[
−λ6ϕ(λ) + 2

∫ ∞
λ

ϕ(λ′)λ′5dλ′
]
.

(30)
We set

χ(λ) =
∫ ∞
λ

ϕ(λ′)λ′5dλ′. (31)

Then χ′(λ) = ϕ(λ)λ5 and

ϕ′(λ) =
χ′′(λ)
λ5

− 5χ′(λ)
λ6

· (32)

We obtain

χ′′(λ) + 3
(
$λ5 − 1

λ

)
χ′(λ) − 6$λ4χ(λ) = 0. (33)

This equation is difficult to solve. The asymptotic behav-
ior can however be obtained for large λ. In this case, one
expects ϕ to decay rapidly. Integration for large λ gives

χ(λ) = K1λ
−4

(
1 +

16
9$

λ−6 +O(λ−12)
)

exp
(
−$λ

6

2

)
(34)

where K1 is a constant, and then

ϕ(λ) = K1λ
−4

(
−3$+

4
3
λ−6 +O(λ−12)

)
exp

(
−$λ

6

2

)
(35)

i.e. a very abrupt decay to 0, which legitimates a similar
scaling of all moments of the distribution.

2.5 Non-linear elastic behavior

With the scaling of ` with σ, we now are in position to con-
clude on the elastic stiffness of the material. Using equa-
tion (9), we arrive at a tangent elastic modulus K

dσ
dε

= K ∝ `−5 ∝ σ5/3. (36)

Integrating this differential equation yields

σ ∝ (ε∗ − ε)−δ (37)

where
δ =

3
2
· (38)

Thus the stress has been found to diverge for a finite strain
ε∗. It should be emphasized that albeit such a divergence
is obviously expected from stearic hindrance effects, the
latter are not directly at play here since we have con-
sidered that the diameter of the fibers is zero. Therefore
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Fig. 3. Non-linear elastic behavior analyzed according to the
expected power-law behavior of the theoretical section. Each
data set (dots) corresponds to a different imposed strain ε1

applied prior to recording the present data points (ε1 = 0.95,
0.92, 0.90, 0.85 and 0.80 respectively from top to bottom).
Linear fits are shown as thin lines.

the stearic limitation corresponds to a singular behavior of
the stress as the strain reaches 100%. Here the mechanism
for the divergence is slightly different. It corresponds to a
vanishing of the bond length and hence a divergence of
the stiffness. No specific threshold strain was introduced.
It appeared from the integration. Moreover the above ar-
gument gives the exponent δ of the divergence.

It is important to note that the mean contact force
is not directly proportional to the external stress because
of the new contacts being created. Indeed we have seen
above that dF ∝ `2dσ, or

dF ∝ σ−2/3dσ (39)

thus
F ∝ σ1/3 (40)

i.e. a much slower increase than naively expected.
Summarizing the above results we can write as a func-

tion of strain 
σ ∝ (ε∗ − ε)−3/2

K ∝ (ε∗ − ε)−5/2

〈`〉 ∝ (ε∗ − ε)1/2

F ∝ (ε∗ − ε)−1/2

(41)

or as a function of the stress
(ε∗ − ε) ∝ σ−2/3

K ∝ σ5/3

〈`〉 ∝ σ−1/3

F ∝ σ1/3.

(42)

3 Comparison with experiment

We now turn to the experimental part. The material used
was a low density glass wool, produced on a pilot line for

research and development purposes. There exists a scat-
tering of diameters of fibers and the average diameter is
equal to 4 µm. The wool porosity is approximately equal
to 99.6 %.

Although we focus here on the elastic behavior, there
are a number of other effects which come into play under
compression. Fibers may break inducing damage, they re-
lax when subjected to a steady compression, solid friction
may be active at the contacts... Therefore, we performed
the following test in order to extract the elastic behav-
ior. A large strain ε1 was first imposed, and then released.
This first loading gives rise to some damage i.e. breaking
of fibers which reduces the elastic stiffness of the mate-
rial. However this damage only depends on the maximum
compression applied in the past. The first loading curve is
thus discarded. A second compression is applied up to ε1.
This second loading phase is the one which is analyzed.
No further damage is expected to happen because of the
first compression. Friction certainly exists but it should
not affect the test as long as the load is not reversed, and
thus we did not analyze the unloading.

Parallelepipedic samples of 200×200 mm cross-section
have been used. Their height was that of the material as
it comes out of the production line (about 130 mm). The
wool was freshly produced before the test, but it was not
preserved from humidity in any manner. All tests were
performed at ambient temperature, and no aging was ob-
served.

Two mechanical testing machine have been used to
characterize the behavior of the samples. Constant strain
rates ε̇ in the range 4 × 10−3 s−1 to 4 × 10−2 s−1 were
imposed for the compression and the unloading. No sig-
nificant differences could be noted as a function of strain
rate.

The behavior was analyzed by plotting the stress raised
to the power −1/δ = −2/3 as a function of the strain.
Figure 3 shows such plots for five different ε1, (0.95, 0.92,
0.90, 0.85, 0.80 from top to bottom), and the correspond-
ing linear fits.

The first feature revealed by this graph is that the
power-law divergence seems to be well obeyed. No curva-
ture in the data points is visible for large strains. Second,
we note that the compression curves are significantly de-
pendent on ε1. This is to be interpreted as damage tak-
ing place in the sample as the maximum imposed strain
increases. Third, amazingly the point of divergence ε∗ ap-
pears to be independent of ε1. This may be due to the
fact that as fibers are broken, they mostly remain in place
and thus broken fibers may still be brought to contact and
thus they do not affect the maximum compaction. From
the fits, we estimate

ε∗ ≈ 0.96 (43)

i.e. just one percent above the largest imposed strain.
For small to moderate strains, the power-law relation

between stress and strain is not obeyed. In fact, a binder
is sprayed on the glass wool at the final stage of manu-
facturing, to give it better mechanical performances. This
binder establishes permanent connections between fibers.
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Fig. 4. Same data as the previous figure in log-log coordinates.
The different curves refer to different levels of maximum strain
applied to the material (and hence different damage levels).
From up to the bottom, the maximum strain applied decrease.
We note that the same value of ε∗ has been used in this plot
for all data sets. The dotted line indicates a slope of −3/2.

Indeed it is observed that for strains less than about 30%,
the behavior is simply linear elastic. In this regime, the
elastic behavior is very little governed by the creation of
new contacts, but by the mean distance between chemi-
cally glued fiber connections. Then, for larger strains, new
contacts begin to contribute to the non-linear elastic be-
havior. This regime is accurately followed only for strains
larger than about 60%.

Figure 4 shows on a log-log scale the evolution of σ
versus the strain difference ε∗− ε for various damage lev-
els. A straight line of slope -3/2 is shown as a guide to the
eye. We do observe that the power-law regime is indeed
very accurately reproduced and is fully consistent with
the previous analysis. This second graph however mag-
nifies the strains close to ε∗, and still do not reveal any
systematic deviations. Finally, we estimate δ = 1.5 ± 0.1
in excellent agreement with the theoretical value.

The figures shown here are only examples of such a be-
havior. Many other experiments have been performed with
other samples at different loading velocities, with different
loading histories, and similar results have been obtained
consistently, provided damage is avoided in the analyzed
data by a prior loading.

4 Conclusion

The main purpose of the present investigation was to
study the elastic behavior of a light fibrous material and
particularly the divergence of the compressive stress, σ, as
the strain approaches the critical compression ε∗. To de-
scribe the non-linear elastic behavior, we propose the law
σ ∝ (ε∗ − ε)−3/2 where ε∗ is an intrinsic property of the
material, independent of its damage. The broken fibers
do not affect the divergence strain, ε∗, because these fibers

still contribute to contacts during compression. This law
was theoretically justified, and many experiments have
been performed and have confirmed the validity of our
description.

It is worth emphasizing that in spite of the variability
of the samples density, thickness or distribution of binding
agent, the above non-linear elastic behavior appears to be
extremely robust and in particular the 3/2 exponent is
very accurately measured on all samples.

We have not studied mechanical properties like dam-
age (breaking of fiber), viscoelastic effects and friction.
The latter have to be considered in order to reach a more
accurate macroscopic description of the mechanical behav-
ior of light fibrous materials, but they clearly fall outside
the scope of the present study.

To study the non-linear elastic behavior, we have as-
sumed that the mechanical behavior of the fibers was lin-
ear elastic and that the only source of non-linearity was
due to the geometry of contacts, i.e. the increase in the
number of contacts between fibers during compression. Let
us note that a similar treatment may be applied to the vis-
coelastic behavior. This opens the way to describe the ap-
parent non-linear viscoelastic behavior of these materials
consistently. Future work is planned in this direction.
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